FIFTH EDITION

Fundamentals of Electric Circuits

Charles K. Alexander | Matthew N. O. Sadiku

- (a) $q = 6.482 \times 10^{17} x [-1.602 \times 10^{-19} C] = -103.84 mC$
- (b) $q = 1.24 \times 10^{18} \times [-1.602 \times 10^{-19} \text{ C}] = -198.65 \text{ mC}$
- (c) $q = 2.46 \times 10^{19} \times [-1.602 \times 10^{-19} \text{ C}] = -3.941 \text{ C}$
- (d) $q = 1.628 \times 10^{20} \times [-1.602 \times 10^{-19} \text{ C}] = -26.08 \text{ C}$

- (a) i = dq/dt = 3 mA
- (b) i = dq/dt = (16t + 4) A(c) $i = dq/dt = (-3e^{-t} + 10e^{-2t}) nA$
- (d) $i = dq/dt = 1200\pi \cos 120\pi t \text{ pA}$
- (e) $\mathbf{i} = d\mathbf{q}/d\mathbf{t} = -e^{-4t} (80\cos 50t + 1000\sin 50t) \,\mu\mathbf{A}$

(a)
$$q(t) = \int i(t)dt + q(0) = (3t + 1) C$$

(b) $q(t) = \int (2t + s) dt + q(v) = (t^{2} + 5t) mC$
(c) $q(t) = \int 20 \cos(10t + \pi/6) + q(0) = (2\sin(10t + \pi/6) + 1)\mu C$

(d)
$$q(t) = \int 10e^{-30t} \sin 40t + q(0) = \frac{10e^{-30t}}{900 + 1600} (-30\sin 40t - 40\cos t)$$
$$= -e^{-30t} (0.16\cos 40t + 0.12\sin 40t) C$$

q = it = 7.4 x 20 = 148 C

$$q = \int i dt = \int_{0}^{10} \frac{1}{2} t dt = \frac{t^2}{4} \Big|_{0}^{10} = \underline{25 \text{ C}}$$

(a) At t = 1ms, $i = \frac{dq}{dt} = \frac{30}{2} = \underline{15 \text{ A}}$ (b) At t = 6ms, $i = \frac{dq}{dt} = \underline{0 \text{ A}}$ (c) At t = 10ms, $i = \frac{dq}{dt} = \frac{-30}{4} = \underline{-7.5 \text{ A}}$

$$i = \frac{dq}{dt} = \begin{bmatrix} 25A, & 0 < t < 2\\ -25A, & 2 < t < 6\\ 25A, & 6 < t < 8 \end{bmatrix}$$

which is sketched below:

$$q = \int i dt = \frac{10 \times 1}{2} + 10 \times 1 = \underline{15 \ \mu C}$$

(a)
$$q = \int i dt = \int_0^1 10 dt = \underline{10 C}$$

(b) $q = \int_0^3 i dt = 10 \times 1 + \left(10 - \frac{5 \times 1}{2}\right) + 5 \times 1$
 $= 15 + 7.5 + 5 = \underline{22.5C}$
(c) $q = \int_0^5 i dt = 10 + 10 + 10 = \underline{30 C}$

$$q = it = 10x10^3x15x10^{-6} = 150 \text{ mC}$$

For 0 < t < 6s, assuming q(0) = 0,

$$q(t) = \int_{0}^{t} idt + q(0) = \int_{0}^{t} 3tdt + 0 = 1.5t^{2}$$

At t=6, q(6) = 1.5(6)² = 54
For 6 < t < 10s,

$$q(t) = \int_{6}^{t} idt + q(6) = \int_{6}^{t} 18dt + 54 = 18t - 54$$

At t=10, q(10) = 180 - 54 = 126
For 10

$$q(t) = \int_{10}^{t} idt + q(10) = \int_{10}^{t} (-12)dt + 126 = -12t + 246$$

At t=15, q(15) = -12x15 + 246 = 66 For 15<t<20s,

$$q(t) = \int_{15}^{t} 0dt + q(15) = 66$$

Thus,

$$q(t) = \begin{cases} 1.5t^2 \ \mathbf{C}, \ \mathbf{0} < \mathbf{t} < \mathbf{6s} \\ 18t - 54 \ \mathbf{C}, \ \mathbf{6} < \mathbf{t} < \mathbf{10s} \\ -12t + 246 \ \mathbf{C}, \ \mathbf{10} < \mathbf{t} < \mathbf{15s} \\ 66 \ \mathbf{C}, \ \mathbf{15} < \mathbf{t} < \mathbf{20s} \end{cases}$$

The plot of the charge is shown below.

(a) $i = [dq/dt] = 20\pi cos(4\pi t) mA$ $p = vi = 60\pi cos^2(4\pi t) mW$ At t=0.3s,

$$p = vi = 60\pi \cos^2(4\pi 0.3) \text{ mW} = 123.37 \text{ mW}$$

(b) $W = \int p dt = 60\pi \int_0^{0.6} \cos^2 (4\pi t) dt = 30\pi \int_0^{0.6} [1 + \cos(8\pi t)] dt$

$$W = 30\pi [0.6 + (1/(8\pi))[\sin(8\pi 0.6) - \sin(0)]] = 58.76 \text{ mJ}$$

(a)
$$q = \int i dt = \int_0^1 0.02 (1 - e^{-0.5t}) dt = 0.02 (t + 2e^{-0.5t}) \Big|_0^1 = 0.02 (1 + 2e^{-0.5} - 2) = 4.261 \text{ mC}$$

(b) $p(t) = v(t)i(t)$
 $p(1) = 10\cos(2)x0.02(1 - e^{-0.5}) = (-4.161)(0.007869)$

= -32.74 mW

(a)
$$q = \int i dt = \int_0^2 0.006 e^{-2t} dt = \frac{-0.006}{2} e^{2t} \Big|_0^2$$

= -0.003($e^{-4} - 1$)=
2.945 mC

(b)
$$v = \frac{10 \text{di}}{\text{dt}} = -0.012 \text{e}^{-2t} (10) = -0.12 \text{e}^{-2t}$$
 V this leads to $p(t) = v(t)i(t) = (-0.12 \text{e}^{-2t})(0.006 \text{e}^{-2t}) = -720 \text{e}^{-4t} \mu W$

(c)
$$w = \int p dt = -0.72 \int_0^3 e^{-4t} dt = \frac{-720}{-4} e^{-4t} 10^{-6} \Big|_0^3 = -180 \ \mu J$$

(a)

$$i(t) = \begin{cases} 30t \text{ mA}, \ 0 < t < 2\\ 120\text{-}30t \text{ mA}, \ 2 < t < 4 \end{cases}$$
$$v(t) = \begin{cases} 5 \text{ V}, \ 0 < t < 2\\ -5 \text{ V}, \ 2 < t < 4 \end{cases}$$
$$p(t) = \begin{cases} 150t \text{ mW}, \ 0 < t < 2\\ -600\text{+}150t \text{ mW}, \ 2 < t < 4 \end{cases}$$

which is sketched below.

(b) From the graph of p,

$$W = \int_{0}^{4} p dt = \underline{0} \mathbf{J}$$

$$\Sigma p = 0 \rightarrow -205 + 60 + 45 + 30 + p_3 = 0$$

 $p_3 = 205 - 135 = 70 \text{ W}$

Thus element 3 receives **70 W**.

 $\begin{array}{l} p_1 = 30(-10) = \textbf{-300 W} \\ p_2 = 10(10) = \textbf{100 W} \\ p_3 = 20(14) = \textbf{280 W} \\ p_4 = 8(-4) = \textbf{-32 W} \\ p_5 = 12(-4) = \textbf{-48 W} \end{array}$

$$\mathbf{I} = \mathbf{8} - \mathbf{2} = \mathbf{6} \mathbf{A}$$

Calculating the power absorbed by each element means we need to find vi for each element.

 $p_{8 \text{ amp source}} = -8x9 = -72 \text{ W}$ $p_{element \text{ with } 9 \text{ volts across it}} = 2x9 = 18 \text{ W}$ $p_{element \text{ with } 3 \text{ bolts across it}} = 3x6 = 18 \text{ W}$ $p_{6 \text{ volt source}} = 6x6 = 36 \text{ W}$

One check we can use is that the sum of the power absorbed must equal zero which is what it does.

$$p_{30 \text{ volt source}} = 30x(-6) = -180 \text{ W}$$

$$p_{12 \text{ volt element}} = 12x6 = 72 \text{ W}$$

$$p_{28 \text{ volt element with 2 amps flowing through it} = 28x2 = 56 \text{ W}$$

$$p_{28 \text{ volt element with 1 amp flowing through it} = 28x1 = 28 \text{ W}$$

$$p_{the 5Io dependent source} = 5x2x(-3) = -30 \text{ W}$$

Since the total power absorbed by all the elements in the circuit must equal zero, or $0 = -180+72+56+28-30+p_{into the element with Vo}$ or

 $p_{into \ the \ element \ with \ Vo} = 180\text{--}72\text{--}56\text{--}28\text{+-}30 = \textbf{54} \ \textbf{W}$

Since $p_{into the element with Vo} = V_o x 3 = 54$ W or $V_o = 18$ V.

$$p = vi \longrightarrow i = \frac{p}{v} = \frac{60}{120} = 0.5 \text{ A}$$

 $q = it = 0.5x24x60x60 = 43.2 \text{ kC}$
 $N_e = qx6.24x10^{18} = 2.696x10^{23} \text{ electrons}$

 $q = it = 40x10^3x1.7x10^{-3} = 68 C$

W = pt = 1.8x(15/60) x30 kWh = 13.5kWhC = 10cents x13.5 = **\$1.35**

W = pt = 60 x24 Wh = 0.96 kWh = 1.44 kWh

C = 8.2 centsx0.96 = **11.808 cents**

$$Cost = 1.5 \text{ kW} \times \frac{3.5}{60} \text{ hr} \times 30 \times 8.2 \text{ cents/kWh} = 21.52 \text{ cents}$$

(a)
$$i = \frac{0.8 \text{A} \cdot \text{h}}{10 \text{h}} = 80 \text{ mA}$$

(b) $p = \text{vi} = 6 \times 0.08 = 0.48 \text{ W}$
(c) $w = \text{pt} = 0.48 \times 10 \text{ Wh} = 0.0048 \text{ kWh}$

(a) Let
$$T = 4h = 4 \times 3600$$

 $q = \int idt = \int_0^T 3dt = 3T = 3 \times 4 \times 3600 = \underline{43.2 \text{ kC}}$

(b) W =
$$\int pdt = \int_0^T vidt = \int_0^T (3) \left(10 + \frac{0.5t}{3600} \right) dt$$

= $3 \left(10t + \frac{0.25t^2}{3600} \right) \Big|_0^{4 \times 3600} = 3 [40 \times 3600 + 0.25 \times 16 \times 3600]$
= 475.2 kJ

(c)
$$W = 475.2 \text{ kWs}, \quad (J = Ws)$$

 $Cost = \frac{475.2}{3600} \text{ kWh} \times 9 \text{ cent} = \underline{1.188 \text{ cents}}$

(a)
$$i = \frac{P}{V} = \frac{60}{120}$$

= **500 mA**

(b)
$$W = pt = 60 \times 365 \times 24 Wh = 525.6 kWh$$

Cost = \$0.095 × 525.6

= \$49.93

$$w = pt = 1.2 \text{kW} \frac{(20 + 40 + 15 + 45)}{60} \text{ hr} + 1.8 \text{ kW} \left(\frac{30}{60}\right) \text{hr}$$
$$= 2.4 + 0.9 = 3.3 \text{ kWh}$$
$$\text{Cost} = 12 \text{ cents} \times 3.3 = \underline{39.6 \text{ cents}}$$

Monthly charge = \$6

First 250 kWh @ \$0.02/kWh = \$5

Remaining 2,436–250 kWh = 2,186 kWh @ \$0.07/kWh= \$153.02

Total = **\$164.02**

Total energy consumed = 365(120x4 + 60x8) W Cost = 0.12x365x960/1000 = 42.05

i = 20
$$\mu A$$

$$q = 15 \ C$$

$$t = q/i = 15/(20 x 10^{-6}) = \textbf{750} x \textbf{10}^3 \ \textbf{hrs}$$

$$i = \frac{dq}{dt} \rightarrow q = \int i dt = 2000 \times 3 \times 10^{-3} = \underline{6C}$$

- (a) Energy = $\sum pt = 200 \ge 6 + 800 \ge 2 + 200 \ge 10 + 1200 \ge 4 + 200 \ge 2$ = 10 kWh
- (b) Average power = 10,000/24 = 416.7 W

energy = (5x5 + 4x5 + 3x5 + 8x5 + 4x10)/60 = 2.333 MWhr

(a)
$$i = \frac{160A \cdot h}{40} = \underline{4A}$$

(b) $t = \frac{160Ah}{0.001A} = \frac{160,000h}{24h / day} = \underline{6,667 \ days}$

 $W = pt = vit = 12x \ 40x \ 60x60 = 1.728 \ MJ$

P = 10 hp = 7460 W

W = pt = 7460 × 30 × 60 J = $13.43 \times 10^6 J$

$$W = pt = 600x4 = 2.4 \text{ kWh}$$

C = 10cents x2.4 = **24 cents**

Chapter 2, Solution 1. Design a problem, complete with a solution, to help students to better understand Ohm's Law. Use at least two resistors and one voltage source. Hint, you could use both resistors at once or one at a time, it is up to you. Be creative.

Although there is no correct way to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

The voltage across a 5-k Ω resistor is 16 V. Find the current through the resistor.

Solution

v = iR i = v/R = (16/5) mA = 3.2 mA

 $p = v^2/R \rightarrow R = v^2/p = 14400/60 = 240 \text{ ohms}$

For silicon, $\rho = 6.4 \times 10^2 \,\Omega$ -m. $A = \pi r^2$. Hence,

$$R = \frac{\rho L}{A} = \frac{\rho L}{\pi r^2} \longrightarrow r^2 = \frac{\rho L}{\pi R} = \frac{6.4 \times 10^2 \times 4 \times 10^{-2}}{\pi \times 240} = 0.033953$$

r = **184.3 mm**

(a)
$$\mathbf{i} = 40/100 = 400 \text{ mA}$$

(b) i = 40/250 = 160 mA

n = 9; l = 7; b = n + l - 1 = 15

n = 12; l = 8; b = n + l - 1 = <u>19</u>

6 branches and 4 nodes

Chapter 2, Solution 8. Design a problem, complete with a solution, to help other students to better understand Kirchhoff's Current Law. Design the problem by specifying values of i_a , i_b , and i_c , shown in Fig. 2.72, and asking them to solve for values of i_1 , i_2 , and i_3 . Be careful specify realistic currents.

Although there is no correct way to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

Use KCL to obtain currents i_1 , i_2 , and i_3 in the circuit shown in Fig. 2.72.

Solution

At node d,

At A, $1+6-i_1 = 0$ or $i_1 = 1+6 = 7$ A

At B, $-6+i_2+7 = 0$ or $i_2 = 6-7 = -1$ A

At C, $2+i_3-7=0$ or $i_3=7-2=5$ A